Abstract

Two-component fermions are known to behave like a gas of molecules in the limit of Bose-Einstein condensation of diatomic pairs tightly bound with zero-range interactions. We discover that the formation of cluster states occurs when the effective range of two-body interaction exceeds roughly 0.46 times the scattering length, regardless of the details of the short-range interaction. Using an explicitly correlated Gaussian basis set expansion approach, we calculate the binding energy of cluster states in trapped few-body systems and show the difference of structural properties between cluster states and gaslike states. We identify the condition for cluster formation and discuss the potential observation of cluster states in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call