Abstract
Abstract Before detailed cell design analyses, rearranging the binary (or 0-1) machine-part matrix into a compact block diagonal form (BDF) is useful for controlling combinatorial explosion during subsequent decision-making involving machine duplication, subcontracting, intercell layout design, etc. Several authors have shown that a compact BDF corresponds to the implicit clusters in both dimensions being expressed as row and column permutations. A traditional approach for solving this problem has been to obtain the two permutations independently by solving the permutation problem in each dimension as a (unidimensional) travelling salesman problem (TSP). This paper describes cluster first-sequence last heuristics which combine the properties of the minimal spanning tree (MST) (clusters only) and TSP (sequence only) for improved permutation generation. The BDFs obtained with these heuristics were compared with those obtained using the TSP, linear placement problem (LPP), single linkage cluster analysis (SL...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.