Abstract

The self-energy of a translational invariant system of interacting fermions may be expanded in diagrams contributing to the self-energy of finite clusters with open boundary conditions. The exact solution of small clusters might therefore be used to construct a systematic approximation to the self-energy of the infinite system. This approximation incorporates both the local and the itinerant degrees of freedom on an equal footing. We develop this method for the one-band Hubbard Hamiltonian and apply it to the three-band Hamiltonian of the CuO superconductors. Already the lowest nontrivial approximation yields interesting results for the spectral density useful for the interpretation of photoemission experiments. We find (i) transfer of spectral weight from the upper to the lower Hubbard band upon doping, (ii) the formation of an [ital isolated] band of Zhang-Rice singlets separated from the band of triplet states by a many-body gap, and (iii) creation of density of states [ital above] the top of the oxygen band upon doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.