Abstract

Configurationally disordered semiconducting materials including semiconductor alloys [e.g., (GaN)1-x(ZnO)x] and stoichiometric materials with fractional occupation (e.g., LaTiO2N) have attracted a lot of interest recently in search for efficient visible light photo-catalysts. First-principles modeling of such materials poses great challenges due to the difficulty in treating the configurational disorder efficiently. In this work, a configurational averaging approach based on the cluster expansion technique has been exploited to describe bandgaps of ordered, partially disordered (with short-range order), and fully disordered phases of semiconductor alloys on the same footing. We take three semiconductor alloys [Cd1-xZnxS, ZnO1-xSx, and (GaN)1-x(ZnO)x] as model systems and clearly demonstrate that semiconductor alloys can have a system-dependent short-range order that has significant effects on their electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.