Abstract
AbstractSurface ozone is damaging to human health and crop yields. When evaluating global air pollution risk, gridded datasets with high accuracy are desired to reflect the local variations in air pollution concentrations. Here, a cluster‐enhanced ensemble machine learning method was used to develop a new 0.5‐degree monthly surface ozone data set during 2003–2019 by combining numerous informative variables. The overall accuracy of our data set is 91.5% (90.8% for space and 92.3% for time). Historically, populations in South Asia, North Africa and Middle‐East, and High‐income North America are exposed to the highest ozone concentrations. Globally, the population weighted ozone concentration in the peak season is 47.07 ppbv. Our results highlight that ozone pollution is intensifying in some regions, and implicate air quality management is crucial to secure human health from air pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.