Abstract

Transfer learning (TL) has been applied in seizure detection to deal with differences between different subjects or tasks. In this paper, we consider cross-subject seizure detection that does not rely on patient history records, that is, acquiring knowledge from other subjects through TL to improve seizure detection performance. We propose a novel domain adaptation method, named the Cluster Embedding Joint-Probability-Discrepancy Transfer (CEJT), for data distribution structure learning. Specifically, 1) The joint probability distribution discrepancy is minimized to reduce the distribution shift in the source and target domains, and strengthen the discriminative knowledge of classes. 2) A clustering is performed on the target domain, and the class centroids of sources is used as the clustering prototype of the target domain to enhance data structure. It is worth noting that the manifold regularization is used to improve the quality of clustering prototypes. In addition, a correlation-alignment-based source selection metric (SSC) is designed for most favorable subject selection, reducing the computational cost as well as avoiding some negative transfer. Experiments on 15 patients with focal epilepsy from the Children's Hospital, Zhejiang University School of Medicine (CHZU) database shown that CEJT outperforms several state-of-the-art approaches, and can promote the application of seizure detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.