Abstract
We present an algorithm to identify and count different lattice animals (LA's) in the site-percolation model. This algorithm allows a definition of clusters based on the distinction of cluster shapes, in contrast with the well-known Hoshen-Kopelman algorithm, in which the clusters are differentiated by their sizes. It consists in coding each unit cell of a cluster according to the nearest neighbors (NN) and ordering the codes in a proper sequence. In this manner, a LA is represented by a specific code sequence. In addition, with some modification the algorithm is capable of differentiating between fixed and free LA's. The enhanced Hoshen-Kopelman algorithm [J. Hoshen, M. W. Berry, and K. S. Minser, Phys. Rev. E 56, 1455 (1997)] is used to compose the set of NN code sequences of each cluster. Using Monte Carlo simulations on planar square lattices up to 2000x2000, we apply this algorithm to the percolation model. We calculate the cluster diversity and cluster entropy of the system, which leads to the determination of probabilities associated with the maximum of these functions. We show that these critical probabilities are associated with the percolation transition and with the complexity of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.