Abstract

The three-component ionic microemulsion system consisting of AOT/water/decane shows an unusual phase behavior in the vicinity of room temperature. The phase diagram in the temperature-volume fraction (of the dispersed phase) plane exhibits a lower consolute critical point at about 40 degrees centigrades and 10% volume fraction. A percolation line, starting from the vicinity of the critical point, cuts across the plane, extending to high volume fraction side at progressively lower temperatures. In this paper we review the evidence that allows to interpret the phase behavior of our system in terms of interacting spherical droplets. We also investigate the dynamics of droplets, below and approaching the critical point by dynamic light scattering. The first cumulant and time evolution of the droplet density correlation function can be quantitatively calculated by assuming the existence of polydispersed fractal clusters formed by the microemulsion droplets due to attraction. The relaxation phenomena observed in an extensive set of measurements of electrical conductivity and permittivity close to percolation is also reviewed and interpreted through the same cluster-forming mechanism, which reproduces the most relevant features of the frequency-dependent complex dielectric constant of this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.