Abstract

Particle systems interacting with a soft repulsion, at thermal equilibrium and under some circumstances, are known to form cluster crystals, i.e. periodic arrangements of particle aggregates. We study here how these states are modified by the presence of an additional hard-core repulsion, accounting for particle size. To this end we consider a two-dimensional system of Brownian particles interacting through a potential which includes a hard-core and a soft-core (of the GEM-{\alpha} type) repulsive terms. The system shows different phases, and we focus in the regime where cluster crystals form. We consider two situations: the low-temperature one in which particles inside the clusters also show an ordered structure (crystal cluster-crystal phase), and the one occurring at higher temperature in which particles within the clusters are spatially disordered (fluid cluster crystal). An explicit expression for the energy in terms of the typical distance among clusters and the typical distance of the particles within the clusters is obtained for vanishing temperature, which helps to understand the balance between the different forces involved. Finite-temperature corrections are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call