Abstract

In this paper, we introduce a document clustering method based on Sparse Topical Coding, called Cluster-based Sparse Topical Coding. Topic modeling is capable of improving textual document clustering by describing documents via bag-of-words models and projecting them into a topic space. The latent semantic descriptions derived by the topic model can be utilized as features in a clustering process. In our proposed method, document clustering and topic modeling are integrated in a unified framework in order to achieve the highest performance. This framework includes Sparse Topical Coding, which is responsible for topic mining, and K-means that discovers the latent clusters in documents collection. Experimental results on widely-used datasets show that our proposed method significantly outperforms the traditional and other topic model based clustering methods. Our method achieves from 4 to 39% improvement in clustering accuracy and from 2% to more than 44% improvement in normalized mutual information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.