Abstract
Tobacco is one of the major economical crops in the agriculture sector. It is essential to detect tobacco plants using unmanned aerial vehicle (UAV) images for improved crop yield and plays an important role in the early treatment of tobacco plants. The proposed research work is carried out in three phases: In the first phase, we collect images from UAV’s and apply the French Commision Internationale de l'eclairage (CIE) L*a*b colour space model as pre-processing operations and segmentation. And then two prominent motion descriptors namely histogram of flow (HOF) and motion boundary histogram (MBH) are combined with the optimal histogram of oriented gradients (HOG) descriptor for exploring optimal motion trajectory and spatial measurements. And finally, the spatial variations with respect to the scale and illumination changes are incorporated using the optimal HOG descriptor. Here both dense motion patterns and HOG are refined using hierarchical feature selection using principal component analysis (PCA). The proposed model is trained and evaluated on different tobacco UAV image datasets and done a comparative analysis of different machine learning (ML) algorithms. The proposed model achieves good performance with 95% accuracy and 92% of sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.