Abstract
Registration of medical images like CT-MR, MR-MR etc. are challenging area for researchers. This chapter introduces a new cluster based registration technique with help of the supervised optimized neural network. Features are extracted from different cluster of an image obtained from clustering algorithms. To overcome the drawback regarding convergence rate of neural network, an optimized neural network is proposed in this chapter. The weights are optimized to increase the convergence rate as well as to avoid stuck in local minima. Different clustering algorithms are explored to minimize the clustering error of an image and extract features from suitable one. The supervised learning method applied to train the neural network. During this training process an optimization algorithm named Genetic Algorithm (GA) is used to update the weights of a neural network. To demonstrate the effectiveness of the proposed method, investigation is carried out on MR T1, T2 data sets. The proposed method shows convincing results in comparison with other existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.