Abstract

Optical coherence tomography (OCT) has become a popular modality in the dermatology discipline due to its moderate resolution and penetration depth. OCT images, however, contain a grainy pattern called speckle. To date, a variety of filtering techniques have been introduced to reduce speckle in OCT images. However, further improvement is required to reduce edge smoothing and the deterioration of small structures in OCT images after despeckling. In this manuscript, we present a novel cluster-based speckle reduction framework (CSRF) that consists of a clustering method, followed by a despeckling method. Since edges are borders of two adjacent clusters, the proposed framework leaves the edges intact. Moreover, the multiplicative speckle noise could be modeled as additive noise in each cluster. To evaluate the performance of CSRF and demonstrate its generic nature, a clustering method, namely k-means (KM), and, two pixelwise despeckling algorithms, including Lee filter (LF) and adaptive Wiener filter (AWF), are used. The results indicate that CSRF significantly improves the performance of despeckling algorithms. These improvements are evaluated on healthy human skin images in vivo using two numerical assessment measures including signal-to-noise ratio (SNR), and structural similarity index (SSIM).

Highlights

  • Optical coherence tomography (OCT) is an optical imaging modality comparable to ultrasound imaging, except that OCT uses light while ultrasound uses sound waves [1,2]

  • We proposed a cluster-based speckle reduction framework (CSRF) for OCT images to reduce the speckle

  • The method was successfully tested on 56 sets of OCT images of human skin, in vivo

Read more

Summary

Introduction

Optical coherence tomography (OCT) is an optical imaging modality comparable to ultrasound imaging, except that OCT uses light while ultrasound uses sound waves [1,2]. OCT is used for performing high-resolution cross sectional imaging and works based on lowcoherence interferometry [3]. The interferometry relies on the temporal and spatial coherence of optical waves that are backscattered from the tissue [4]. If the central wavelength of the light source is equal to or larger than the scattering compartments within the sample under investigation, the interference of the reflected light with different amplitudes and phases generates a grainy texture in the image called speckle. Speckle degrades the quality of OCT images and conceals the clinically important features [5]. The quality of the images is improved, and the diagnostically relevant features become more visible

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call