Abstract

The presence of unobserved heterogeneity in crash data can result in estimation of biased model parameters and incorrect inferences. The research presented in this paper investigated severity of crashes reported at highway–rail grade crossings by appropriately clustering the data, accounting for unobserved heterogeneity. A combination of data mining and statistical regression methods was used to cluster crash data into subsets and then to identify factors associated with crash injury severity levels. This research relied on highway–rail accident, incident, and crossing inventory databases for 2011 to 2015 obtained from FRA. Three clustering methods— K-means, traditional latent class cluster, and variational Bayesian latent class cluster—were considered, and the variational Bayesian latent class cluster method was chosen for partitioning the data set for model estimation. Unclustered data as well as the clustered subsets were used to estimate ordered logit models for crash injury severity. A comparison revealed that the cluster-based approach provided more relevant model parameters and identified factors relevant only to certain clusters of the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.