Abstract
Metabolite identification in non-targeted NMR-based metabolomics remains a challenge. While many peaks of frequently occurring metabolites are assigned, there is a high number of unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis. Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which gives important information on possible structural and/or biological correlations from the NMR spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a hypothesis, a full structural elucidation approach would be required. The approach allows a higher identification yield in NMR spectra, especially once pathway-related subclusters are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.