Abstract

Based on the collected multiwavelength data, namely in the radio (NVSS, FIRST, RATAN-600), IR (WISE), optical (Pan-STARRS), UV (GALEX), and X-ray (ROSAT, Swift-XRT) ranges, we have performed a cluster analysis for the blazars of the Roma-BZCAT catalog. Using two machine learning methods, namely a combination of PCA with k-means clustering and Kohonen’s self-organizing maps (SOMs), we have constructed an independent classification of the blazars (five classes) and compared the classes with the known Roma-BZCAT classification (FSRQs, BL Lacs, galaxy-dominated BL Lacs, and blazars of an uncertain type) as well as with the high synchrotron peaked (HSP) blazars from the 3HSP catalog and blazars from the TeVCat catalog. The obtained groups demonstrate concordance with the BL Lac/FSRQ classification along with a continuous character of the change in the properties. The group of HSP blazars stands out against the overall distribution. We examine the characteristics of the five groups and demonstrate distinctions in their spectral energy distribution shapes. The effectiveness of the clustering technique for objective analysis of multiparametric arrays of experimental data is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.