Abstract
We performed neural network clustering on dynamic contrast-enhanced perfusion magnetic resonance imaging time-series in patients with and without stroke. Minimal-free-energy vector quantization, self-organizing maps, and fuzzy c-means clustering enabled self-organized data-driven segmentation with respect to fine-grained differences of signal amplitude and dynamics, thus identifying asymmetries and local abnormalities of brain perfusion. We conclude that clustering is a useful extension to conventional perfusion parameter maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.