Abstract
We formalize the way in which one can think about cluster algebras of infinite rank by showing that every rooted cluster algebra of infinite rank can be written as a colimit of rooted cluster algebras of finite rank. Relying on the proof of the posivity conjecture for skew-symmetric cluster algebras (of finite rank) by Lee and Schiffler, it follows as a direct consequence that the positivity conjecture holds for cluster algebras of infinite rank. Furthermore, we give a sufficient and necessary condition for a ring homomorphism between cluster algebras to give rise to a rooted cluster morphism without specializations. Assem, Dupont and Schiffler proposed the problem of a classification of ideal rooted cluster morphisms. We provide a partial solution by showing that every rooted cluster morphism without specializations is ideal, but in general rooted cluster morphisms are not ideal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematische Zeitschrift
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.