Abstract

We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our Supernova feedback model is able to establish a self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexit with other channels of bulge assembly such as bar and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call