Abstract
Clubroot is a disease in cruciferous plants caused by the soil-borne pathogen Plasmodiophora brassicae. This pathogen rapidly spreads in soil, and plant growth is inhibited by infection with spores. To reduce clubroot disease, its prevalence in Brassica rapa var. perviridis was investigated in different soil environments (chemical and organic soils). The bacterial biomass, diversity, and community structure of the soils and roots were analyzed by environmental DNA, PCR-DGGE, and 16S rRNA sequencing. Bacterial biomass and diversity in the organic soil were higher than those in the chemical soil. The disease severity of plants cultivated in organic soil was lower than that in chemical soil. The number of endophytic bacteria in the roots decreased when the plants were infected with P. brassicae in both soil types. Higher bacterial biomass in the soils and roots appeared to reduce the infection of P. brassicae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.