Abstract

Sample covariance matrices from a finite mean mixture model naturally carry certain spiked eigenvalues, which are generated by the differences among the mean vectors. However, their asymptotic behaviors remain largely unknown when the population dimension p grows proportionally to the sample size n. In this paper, a new CLT is established for the spiked eigenvalues by considering a Gaussian mean mixture in such high-dimensional asymptotic frameworks. It shows that the convergence rate of these eigenvalues is O(1/n) and their fluctuations can be characterized by the mixing proportions, the eigenvalues of the common covariance matrix, and the inner products between the mean vectors and the eigenvectors of the covariance matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.