Abstract
We give a two-dimensional central limit theorem (CLT) for the second-order quadratic variation of the centered Gaussian processes on [0,T]. Though the approach we use is well known in the literature, the conditions under which the CLT holds are usually based on differentiability of the corresponding covariance function. In our case, we replace differentiability conditions by the convergence of the scaled sums of the second-order moments. To illustrate the usefulness and easiness of use of the approach, we apply the obtained CLT to proving the asymptotic normality of the estimator of the Orey index of a subfractional Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.