Abstract

Overproduction of the exopolysaccharide alginate and conversion to a mucoid phenotype in Pseudomonas aeruginosa are markers for the onset of chronic lung infection in cystic fibrosis (CF). Alginate production is regulated by the extracytoplasmic function (ECF) sigma factor AlgU/T and the cognate anti-sigma factor MucA. Many clinical mucoid isolates carry loss-of-function mutations in mucA. These mutations, including the most common mucA22 allele, cause C-terminal truncations in MucA, indicating that an inability to regulate AlgU activity by MucA is associated with conversion to the mucoid phenotype. Here we report that a mutation in a stable mucoid strain derived from the parental strain PAO1, designated PAO581, that does not contain the mucA22 allele, was due to a single-base deletion in mucA (DeltaT180), generating another type of C-terminal truncation. A global mariner transposon screen in PAO581 for non-mucoid isolates led to the identification of three regulators of alginate production, clpP (PA1801), clpX (PA1802), and a clpP paralogue (PA3326, designated clpP2). The PAO581 null mutants of clpP, clpX and clpP2 showed decreased AlgU transcriptional activity and an accumulation of haemagglutinin (HA)-tagged N-terminal MucA protein with an apparent molecular mass of 15 kDa. The clpP and clpX mutants of a CF mucoid isolate revert to the non-mucoid phenotype. The ClpXP and ClpP2 proteins appear to be part of a proteolytic network that degrades the cytoplasmic portion of truncated MucA proteins to release the sequestered AlgU, which drives alginate biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call