Abstract
Organic vapor flows are met in a wide range of technical applications (e.g., energy conversion, chemical processes, and refrigeration). Typically, organic fluids contain complex molecules, and their thermodynamic behavior deviates significantly from the ideal or perfect gas laws. The applicability of scaling laws to organic vapor flows is very limited, and there is a need for detailed experimental investigations under relevant process conditions. Furthermore, such investigations can provide a validation basis for the simulations performed with Computational Fluid Dynamics (CFD) tools. On the other hand, there exists a serious lack in experimental organic vapor flow test facilities. In this contribution, a novel Closed Loop Organic vapor Wind Tunnel (CLOWT) is presented. The concept of CLOWT is based on a closed-loop continuously running wind tunnel cycle. Its main components are a blower, a diffuser, a settling chamber, a contraction zone, a test section module, and a return, including a throttle valve and a mass flow meter. The test facility CLOWT applies the modular design approach which enables analysis of various flow configurations and components like blowers, small axial test turbines, nozzle flows or transonic flows past test objects. Thanks to an auxiliary heating system, organic vapor flows can be investigated at elevated pressure and temperature levels. The operation of CLOWT is based on closed gas turbine cycle control methods (e.g., inventory control). In addition to the general test facility concept, the paper gives a detailed discussion of the CLOWT special design features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.