Abstract

Inclusion of clover in grasslands increases functional diversity, N yield and forage quality and has been advocated for mitigating nitrous oxide (N2O) emissions. However, boreal grass-clover leys often show poor winter survival with considerable aboveground losses of nitrogen (N) and carbon (C). Little is known about how these losses affect off-season N2O emissions. Here we report field experiments over two winters, conducted at two coastal locations in Western and Northern Norway. N2O emissions were measured in plots with 0, 30 and 100% red (T. pretense) and white clover (T. repens) in a timothy - meadow fescue mixture. Overwinter N loss from the sward was quantified by comparing N contents in roots, stubble and herbage in autumn and spring. Additional treatments were removal of above-ground biomass in autumn and soil compaction. Off-season N2O emissions correlated positively with estimated overwinter N loss from herbage, which in turn depended on the fraction of clover in the ley. Pure grass leys emitted less N2O than leys that contained clover. Corrected for background emissions from pure grass, up to 13% of the above-ground N loss was emitted as N2O–N when clover was grown in pure stand. This fraction was much smaller, however, when clover was grown in mixture with grass (1.9 ± 0.9%), suggesting reassimilation of inorganic N. Indeed, we found significant increases in root and stubble N in mixtures throughout winter. Removal of above-ground biomass in autumn appeared to reduce the sward's ability to retain N throughout winter, and hence had no or a stimulating effect on N2O emissions. Soil compaction increased off-season N2O emissions 1.3–1.6-fold. Our results show that boreal grass-clover leys can be a significant source of N2O during winter, intricately controlled by loss and reassimilation of N. This underscores the importance of off-season plant-soil management for reducing the greenhouse gas (GHG) footprint of animal production in high latitude ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.