Abstract

Rare-category detection helps discover new rare classes in an unlabeled data set by selecting their candidate data examples for labeling. Most of the existing approaches for rare-category detection require prior information about the data set without which they are otherwise not applicable. The prior-free algorithms try to address this problem without prior information about the data set; though, the compensation is high time complexity, which is not lower than \(O(dN^2)\) where \(N\) is the number of data examples in a data set and \(d\) is the data set dimension. In this paper, we propose CLOVER a prior-free algorithm by introducing a novel rare-category criterion known as local variation degree (LVD), which utilizes the characteristics of rare classes for identifying rare-class data examples from other types of data examples and passes those data examples with maximum LVD values to CLOVER for labeling. A remarkable improvement is that CLOVER’s time complexity is \(O(dN^{2-1/d})\) for \(d > 1\) or \(O(N\log N)\) for \(d = 1\). Extensive experimental results on real data sets demonstrate the effectiveness and efficiency of our method in terms of new rare classes discovery and lower time complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.