Abstract
SNPs are fundamental roles for various applications including medical diagnostic, phylogenies and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Genetic variants that are near each other tend to be inherited together; these regions of linked variants are known as haplotypes. Recently, genetics researches revealed that SNPs within certain haplotype blocks induce only a few distinct common haplotypes in the majority of the population. The existence of haplotype block structure has serious implications for association-based methods for the mapping of disease genes. This paper proposes a parallel haplotype block partition and SNPs selection method under a diversity function by using the Hadoop MapReduce framework. The experiment shows that the proposed MapReduce-paralleled combinatorial algorithm performs well on the real-world data obtained in from the HapMap data set; the computation efficiency can be significantly improved proportional to the number of processors being used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.