Abstract

This work presents scattering measurements and photographs of ammonia ice crystals grown at temperatures from 130 to 180 K. The prime candidate for the material making up the visible clouds of Jupiter and Saturn is ammonia ice. Spacecraft observations of these planets have constrained the single-scattering properties of the cloud particles. To further investigate the nature of these particles, ammonia ice crystals were grown at temperatures occuring at the relevant levels of the atmospheres of Jupiter and Saturn. The experimental apparatus used to make these measurements has a glass-walled cylindrical chamber which permits measurement of the scattered light over a wide range of scattering angles and a temperature control system which uses a liquid nitrogen reservoir combined with heaters. The chamber is illuminated by a tungsten lamp through a rapidly spinning filter/polarizer wheel which yields measurements of intensity and linear polarization in each of three colors. A photographic record of the crystals is obtained with a microscope objective, and six linear array detectors measure the scattered light. Representative scattering measurements and photographs are presented, showing a variety of phase functions and crystal shapes. The data cannot be reproduced by theoretical calculations for ammonia clouds composed purely of cubic, tetrahedral, or octahedral crystals. The data appear similar to microwave analog measurements of the scattering by a mix of particles shapes and also by fluffy particles. The ammonia measurements fall into two groups: one has wavelength-dependent polarization and for size parameters up to about seven the scattering properties can be fit by Mie theory. The second group has wavelength-independent phase functions, implying size parameters of 10 to 50, and has a characteristic signature of polarization varying from - 10% to +10%. The data can be used to rule out some models for Jupiter's and Saturn's atmospheres and to guide future modeling efforts. For Jupiter, models with a cloud of ammonia crystals of size parameter equal to about 5 (in the red) are suggested. For Saturn, a model is suggested that has a thin layer of small ammonia crystals (in the Mie range) over a thicker ammonia cloud with the wavelength-independent polarization that is characteristic of larger crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.