Abstract

This brief is concerned with the time-varying formation problem for second-order networked multi-agent systems, which are subject to random communication delays and packet dropouts in the sensor-to-controller and controller-to-actuator channels of each agent. A cloud-based time-varying formation predictive control method with control input quantization is proposed to actively compensate for those random communication constraints. A definition of quantized time-varying formation is given, and then a necessary and sufficient condition to achieve the quantized time-varying formation as well as the stability of the resulting closed-loop system is obtained, which is independent of random communication constraints and quantization errors. Simulation results are provided to verify the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call