Abstract

The spatial organization of the genome plays a critical role in cell-specific biological functions such as gene expression. Existing genome-wide technologies reveal a dynamic interplay between chromatin looping and gene regulation, but the mechanisms by which regulatory interactions between genetic elements are established or maintained remain unclear. Here, we present CLOuD9, a CRISPR-based technology that can create de novo, pairwise chromatin interactions in cells. This technique for chromatin loop reorganization employs dCas9-targeting and ABI1-PYL heterodimerization. It is reversible, but can also establish epigenetic memory under certain conditions, which provides a way to dissect gene regulation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.