Abstract

The southeastern Tibetan Plateau (TP) is the critical region of water vapor transport over the TP. Ground-based Ka-band cloud radar (KaCR) measurements collected at the Motuo National Climate Observatory in 2019 were used to analyze the physical properties of clouds at the front of the water vapor channel over the TP. The cloud top heights (CTHs) measured by the KaCR were verified through a comparison with observations from the Fengyun-4A (FY-4A) satellite at the same location. The KaCR-obtained CTHs were generally consistent with the FY-4A-obtained CTHs, although the KaCR slightly overestimated the CTHs of nonprecipitation clouds and underestimated the CTHs of precipitation clouds. Negative deviations between the KaCR- and FY-4A-obtained CTHs increased with rainfall rate. Cloud cover frequently occurred over Motuo, with an annual mean occurrence frequency of 65.3%. Clouds tended to form frequently at night and dissipate gradually in the daytime. Two peaks in the cloud base height (CBH) distribution were observed in Motuo, located at 0–1 km and 2–3 km, corresponding to precipitation and nonprecipitation clouds, respectively. The CTHs reached a peak at 6–7 km, which might be related to precipitation clouds. Moreover, a maximum CTH probability was observed in the midnight-early morning hours during the rainy season, while the CTH frequency peaked in the evening during the dry season. In addition, low and middle clouds were prevalent in Motuo for the period of observation in 2019. Understanding the characteristics of clouds over the TP will provide key validations of satellite measurements and promote research on cloud forces over the TP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.