Abstract

Variational Autoencoder (VAE) has been widely and successfully used in learning coherent latent representation of data. However, the lack of interpretability in the latent space constructed by the VAE under the prior distribution is still an urgent problem. This paper proposes a VAE with understandable concept embedding named Cloud-VAE, which constructs interpretable latent space by disentangling the latent variables and considering their uncertainty based on cloud model. Firstly, cloud model-based clustering algorithm cast initial constraint of latent space into a prior distribution of concept which can be embedded into the latent space of the VAE to disentangle the latent variables. Secondly, reparameterization trick based on forward cloud transformation algorithm is designed to estimate the latent space concept by increasing the randomness of latent variables. Furthermore, variational lower bound of Cloud-VAE is derived to guide the training process to construct concepts of latent space, realizing the mutual mapping between latent space and concept space. Finally, experimental results on 6 benchmark datasets show that Cloud-VAE has good clustering and reconstruction performance, which can explicitly explain the aggregation process of the model and discover more interpretable disentangled representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.