Abstract

Cloud computing is now a fundamental type of computing due to technological innovation and it is believed to be a benefit for mid-scale enterprises. The use of cloud computing is increasing daily, which improves service quality but also gives rise to security concerns. Finding trustworthy service can be very challenging, take a great deal of time, or produce subpar services. Due to these difficulties, the client needs a service that is dependable, suitable, time-saving, and trustworthy. As a result, from the end user’s perspective, adopting a cloud service’s trustworthiness becomes crucial. Trust is a measure of how well users’ expectations about a service’s capabilities are realized. In this research, a recommendation system for cloud service customers based on random iterative fuzzy computation (RIFTC) is proposed. RIFTC focuses on the assessment of trust using Quality of Service (QoS) characteristics. RIFTC calculates trust using the machine learning approach Support Vector Regression (SVR). RIFTC can helpfully recommend a cloud service to the end user and anticipate the trust values of cloud services.. Precision (97%), latency (51%), throughput (25.99 mbps), mean absolute error (54%), and re-call (97%) rates are used to assess how well this recommendation system performs. RIFTC’s average F-measure rate is calculated by adjusting the number of users from 200 to 300, and it is 93.46% more accurate on average with less time spent than the current methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.