Abstract

Abstract We compare the structure of molecular gas at 40 pc resolution to the ability of gas to form stars across the disk of the spiral galaxy M51. We break the PAWS survey into 370 pc and 1.1 kpc resolution elements, and within each we estimate the molecular gas depletion time ( ), the star-formation efficiency per free-fall time ( ), and the mass-weighted cloud-scale (40 pc) properties of the molecular gas: surface density, Σ, line width, σ, and , a parameter that traces the boundedness of the gas. We show that the cloud-scale surface density appears to be a reasonable proxy for mean volume density. Applying this, we find a typical star-formation efficiency per free-fall time, , lower than adopted in many models and found for local clouds. Furthermore, the efficiency per free-fall time anti-correlates with both Σ and σ, in some tension with turbulent star-formation models. The best predictor of the rate of star formation per unit gas mass in our analysis is , tracing the strength of self-gravity, with . The sense of the correlation is that gas with stronger self-gravity (higher b) forms stars at a higher rate (low ). The different regions of the galaxy mostly overlap in as a function of b, so that low b explains the surprisingly high found toward the inner spiral arms found by Meidt et al. (2013).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.