Abstract

Abstract In the present study, the convective event over the Black Sea area in September 2018 is analyzed using the Weather Research and Forecasting (WRF) Model configured with a fully convective-resolving setup. We test the WRF sensitivity to the choice of sea surface temperature (SST) dataset and microphysics scheme. The simulation is verified using weather radar measurements and ground observations. Both the choice of the microphysical scheme and SST dataset have a significant impact on the dynamic properties of the maritime convective system and associated rainfall. The best results are achieved with the WDM6 microphysical scheme and a more detailed and slightly warmer (compared to the default OSTIA SST) G1SST dataset. The optimally configured WRF simulations add value to coarser driving operational analysis, with more accurate amount and pattern of rainfall and the earlier arrival of the convective system, which is in better agreement with radar and weather station measurements. The vertical structure of the reflectivity profiles in the WDM6 scheme that simulates 15%–20% larger rainwater loading compared to other schemes agrees best with the observed data. Other schemes reproduce excessive reflectivity above the freezing level. Enhanced rainfall estimates and faster convective system propagation in the G1SST WDM6 simulations are linked to stronger cold pools caused by enhanced evaporation due to the higher rainwater content and droplet number concentrations. Stronger cold pools result in the 15%–20% enhancement of latent and sensible heat fluxes, reflecting the strong sensitivity of ocean–atmosphere heat and moisture exchange to the choice of microphysics scheme and SST dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call