Abstract

AbstractOver‐estimation of summer precipitation over the Tibetan Plateau (TP) is a well‐known and persistent problem in most climate models. This study demonstrates the impact of a Gaussian Probability Density Function cloud fraction scheme on rainfall simulations using the Weather Research and Forecasting model. It is found that this scheme in both 0.1° and 0.05° resolutions significantly reduces the wet bias through both local feedbacks and large‐scale dynamic process. Specifically, increased cloud water/ice content with this scheme reduces surface shortwave radiation, and consequently surface heat fluxes and evapotranspiration. This, in turn, dampens the large‐scale thermal effect of the TP and weakens the exaggerated monsoon circulation and low‐level moisture convergence. It is this large‐scale dynamic process that contributes the most (∼70%) to the wet bias reduction. Although this paper presents a modeling study, it highlights the cloud radiative feedback to the large‐scale dynamics and precipitation over the TP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.