Abstract

Gradient copolymers of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) having prescribed linear, parabolic, and hyperbolic composition profiles were synthesized with the guidance of a numerical model that determines the instantaneous comonomer feed rate. These materials exhibit low polydispersity indices (<1.1); the evolution of the overall DMAEMA content and the absolute molecular weight of the copolymers are all in good agreement with the quantities predicted by our model. Compared to random copolymers of HEMA and DMAEMA, the cloud points of dilute buffered aqueous solutions of gradient copolymers decrease with increasing gradient strength; where the gradient strength is defined as the largest difference in the instantaneous composition along the copolymer. The temperature range over which the solutions transition from transparent to turbid also broadens significantly with increasing gradient strength. Both observations suggest the onset of transition to be dictated by the least soluble ends of the polymer chains. These correlations point to the importance of monomer sequence distribution in determining the macroscopic physical properties of copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.