Abstract

Chlorophylls and their derivatives are currently used in a wide range of applications. To replace the volatile organic solvents commonly applied for their extraction from biomass, aqueous solutions of non-ionic surfactants are studied herein in the extraction of chlorophylls from spinach leaves. Aqueous solutions of several surfactants were screened, demonstrating that their hydrophilic-lipophilic balance (HLB) plays the pivotal role on the extraction performance, with the best results obtained for surfactants with a HLB ranging between 10 and 13. A response surface methodology (RSM) was then used to optimize operational conditions (surfactant concentration, solid-liquid ratio and temperature), leading to a maximum extraction yield of chlorophylls of 0.94 mg/g. After the extraction step, the chlorophylls-rich extract was concentrated by heating above the surfactant-water cloud point, leading to the separation into two-phases, and to a concentration factor of 9 and a recovery of 97% of chlorophylls in the surfactant-rich phase. The antioxidant activity of the extracts was finally appraised, showing that the antioxidant activity of the aqueous chlorophylls-rich extracts is higher than that obtained with volatile organic solvents. The obtained results show the potential of aqueous solutions of non-ionic surfactants to extract highly hydrophobic compounds from biomass and their possible direct use in cosmetic and nutraceutical applications, without requiring an additional recovery or purification step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call