Abstract
AbstractFor basic artificial glowworm swarm optimization algorithm has a slow convergence and easy to fall into local optimum, and the cloud model has excellent characteristics with uncertainty knowledge representation, an artificial glowworm swarm optimization algorithm based on cloud model is presented by utilizing these characteristics. The algorithm selects an optimal value of each generation as the center point of the cloud model, compares with cloud droplets and then achieves the better search value of groups which can avoid falling into the local optimum and can speed up the convergence rate of the algorithm. Finally, we use the standard function to test the algorithm. And the test results show that the convergence and the solution accuracy of our proposed algorithm have been greatly improved compared with the basic artificial glowworm swarm optimization algorithm.Keywordscloud modelglowworm swarm optimization algorithmstandard functionoptimal value
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.