Abstract

Cloud infrastructure provides a real time computing environment to customers and had wide applicability in healthcare, medical facilities, business, and several other areas. Most of the health data recorded and saved on the cloud. But the cloud infrastructure is configured using several components and that makes it a complex structure. And the high value of availability and reliability is essential for satisfactory operation of such systems. So, the present study is conducted with the prominent objective of assessing the optimum availability of the cloud infrastructure. For this purpose, a novel stochastic model is proposed and optimized using dragonfly algorithm (DA) and Grey Wolf optimization (GWO) algorithms. The Markovian approach is employed to develop the Chapman-Kolmogorov differential difference equations associate with the system. It is considered that all failure and repair rates are exponentially distributed. The repairs are perfect. The numerical results are derived to highlight the importance of the study and identify the best algorithm. The system attains its optimum availability 0.9998649 at population size 120 with iteration 700 by GWO. It is revealed that grey wolf optimization algorithm performed better than the Dragonfly algorithm in assessing the availability, best fitted parametric values and execution time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.