Abstract

AbstractStratocumulus clouds around the globe tend to organize into cellular patterns, a phenomenon that has been primarily studied for the subtropical trade wind region. However, stratocumulus are also prevalent in high latitudes, where they often occur as mixed‐phase clouds. Yet little research has been conducted regarding mechanisms of cloud organization in the mixed‐phase regime. In cloud‐resolving model simulations we investigate the processes driving organization in open‐cell mixed‐phase stratocumuli. Similar to warm‐phase clouds, mixed‐phase clouds develop a subcloud circulation of evaporated/sublimated precipitation, cold pool formation, and consecutive updrafts driving new convective cells. For a larger ice to liquid water ratio, we find locally stronger precipitation and larger cloud cells. Hence, a higher concentration of ice nucleating particles can induce a breakup of the stratocumulus organization, with implications for the radiative balance at the surface. A decrease in cloud condensation nuclei concentration is also found to intensify precipitation and impact cloud organization.

Highlights

  • This page was generated automatically upon download from the ETH Zurich Research Collection

  • Mechanism: - Precipitation formation at cloud base - Evaporation and latent cooling in the sub-cloud layer leads to cold pool formation - Warm air is lifted above the surface cold pool to form new cloud structures

  • Cloud organization occurs at high latitudes

Read more

Summary

Other Conference Item

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use

Open cell
This remains so far unexplored!
The impact of cloud ice on organization
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.