Abstract
Abstract. Dust aerosols are very efficient ice nuclei, important for heterogeneous cloud glaciation even in regions distant from desert sources. A new generation of ice nucleation parameterizations, including dust as an ice nucleation agent, opens the way towards a more accurate treatment of cold cloud formation in atmospheric models. Using such parameterizations, we have developed a regional dust-atmospheric modelling system capable of predicting, in real time, dust-induced ice nucleation. We executed the model with the added ice nucleation component over the Mediterranean region, exposed to moderate Saharan dust transport, over two periods lasting 15 and 9 days, respectively. The model results were compared against satellite and ground-based cloud-ice-related measurements, provided by SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and the CNR-IMAA Atmospheric Observatory (CIAO) in Potenza, southern Italy. The predicted ice nuclei concentration showed a reasonable level of agreement when compared against the observed spatial and temporal patterns of cloud ice water. The developed methodology permits the use of ice nuclei as input into the cloud microphysics schemes of atmospheric models, assuming that this approach could improve the predictions of cloud formation and associated precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.