Abstract

The Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site has a rich history of actively sensed cloud observations. Fourteen years (1997–2010) of observations from the Millimeter Cloud Radar (MMCR), Micropulse Lidar (MPL), and Belfort/Vaisala Ceilometers are used to understand how instrument selection and sampling impacts estimates of Cloud Fraction (CF) at this location. Although all instruments should be used in combination for the best estimates of CF, instrument downtime limits available samples and increases observational errors, demanding that users make sacrifices when calculating CF at longer intervals relevant to climate studies. Selection of MMCR or MMCR + MPL cloud masks changes very little in the overall understanding of total CF. Addition of the MPL increases the 14-year average CF by 9 %, mainly through an increase in optically thin high clouds year-round, and mid-level clouds during the summer months. Splitting the period into two equal 7-year periods reveals negligible change in MMCR + MPL CF. For the MMCR, however, CF deceases by 6.1 %. This sudden change in CF occurs around the time the radar was upgraded, suggesting that this decrease is tied to hardware sensitivity or scanning strategy changes. Users must be cognizant of this and other issues when calculating CF from the variety of observations available at the ARM SGP site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call