Abstract
The Sun becomes brighter with time, but Earth's climate is roughly temperate for life during its long-term history; for early Earth, this is known as the faint young Sun problem (FYSP). Besides the carbonate-silicate feedback, recent researches suggest that a long-term cloud feedback may partially solve the FYSP. However, the general circulation models they used cannot resolve convection and clouds explicitly. This study re-investigates the clouds using a near-global cloud-permitting model without cumulus convection parameterization. Our results confirm that a stabilizing shortwave cloud feedback does exist, and its magnitude is ≈6 W m−2 or 14% of the energy required to offset a 20% fainter Sun than today, or ≈10 W m−2 or 16% for a 30% fainter Sun. When insolation increases and meanwhile CO2 concentration decreases, low-level clouds increase, acting to stabilize the climate by raising planetary albedo, and vice versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.