Abstract
Clouds are rapidly becoming an important platform for scientific applications. In the Cloud environment with uncountable numeric nodes, resource is inevitably unreliable, which has a great effect on task execution and scheduling. In this paper, inspired by Bayesian cognitive model and referring to the trust relationship models of sociology, we first propose a novel Bayesian method based cognitive trust model, and then we proposed a trust dynamic level scheduling algorithm named Cloud-DLS by integrating the existing DLS algorithm. Moreover, a benchmark is structured to span a range of Cloud computing characteristics for evaluation of the proposed method. Theoretical analysis and simulations prove that the Cloud-DLS algorithm can efficiently meet the requirement of Cloud computing workloads in trust, sacrificing fewer time costs, and assuring the execution of tasks in a security way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.