Abstract

A patient-specific airflow simulation was developed to help address the pressing need for an expansion of the ventilator capacity in response to the COVID-19 pandemic. The computational model provides guidance regarding how to split a ventilator between two or more patients with differing respiratory physiologies. To address the need for fast deployment and identification of optimal patient-specific tuning, there was a need to simulate hundreds of millions of different clinically relevant parameter combinations in a short time. This task, driven by the dire circumstances, presented unique computational and research challenges. We present here the guiding principles and lessons learned as to how a large-scale and robust cloud instance was designed and deployed within 24 hours and 800 000 compute hours were utilized in a 72-hour period. We discuss the design choices to enable a quick turnaround of the model, execute the simulation, and create an intuitive and interactive interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.