Abstract

Abstract Two-category support vector machines (SVMs) have become very popular in the machine learning community for classification problems and have recently been shown to have good optimality properties for classification purposes. Treating multicategory problems as a series of binary problems is common in the SVM paradigm. However, this approach may fail under a variety of circumstances. The multicategory support vector machine (MSVM), which extends the binary SVM to the multicategory case in a symmetric way, and has good theoretical properties, has recently been proposed. The proposed MSVM in addition provides a unifying framework when there are either equal or unequal misclassification costs, and when there is a possibly nonrepresentative training set. Illustrated herein is the potential of the MSVM as an efficient cloud detection and classification algorithm for use in Earth Observing System models, which require knowledge of whether or not a radiance profile is cloud free. If the profile is not clou...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.