Abstract

Chemical equilibrium models used currently to interpret observations of Jupiter are reexamined using new data defining thermal profiles, which are substantially different from those used in the previous models. A model is developed for the chemical reactions controlling the composition of the upper troposphere on Jupiter, specifically the cloud-forming region from 10 bar to 0.1 bar, which includes, for the first time, the effects of aqueous chemistry on the composition and the vertical distribution of many measurable species in the atmosphere, identifying the factors influencing their abundances above the H2O cloud. The thermodynamic data for potential condensates on Jupiter, i.e., NH3(s), NH4SH(s), (NH4)2S(s), and H2S(s), are reexamined, recognizing the lack of data on sulfides for the temperature range of interest on Jupiter. Vertical profiles of mixing ratios for CO2, H2S, NH3, and H2, obtained for several assumed bulk abundances with respect to solar, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.