Abstract

This paper proposes a cloud-based mangrove monitoring framework that uses Google Collaboratory and Google Earth Engine to classify mangroves in Southeast Asia (SEA) using satellite remote sensing imagery (SRSI). Three multi-class classification convolutional neural network (CNN) models were generated, showing F1-score values as high as 0.9 in only six epochs of training. Mangrove forests are tropical and subtropical environments that provide essential ecosystem services to local biota and coastal communities and are considered the most efficient vegetative carbon stock globally. Despite their importance, mangrove forest cover continues to decline worldwide, especially in SEA. Scientists have produced monitoring tools based on SRSI and CNNs to identify deforestation hotspots and drive targeted interventions. Nevertheless, although CNNs excel in distinguishing between different landcover types, their greatest limitation remains the need for significant computing power to operate. This may not always be feasible, especially in developing countries. The proposed framework is believed to provide a robust, low-cost, cloud-based, near-real-time monitoring tool that could serve governments, environmental agencies, and researchers, to help map mangroves in SEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.