Abstract

The amount of data captured is expanding day by day which leads to the need for a monitoring system that helps in decision making. Current technologies such as cloud, machine learning (ML) and Internet of Things (IoT) provide a better solution for monitoring automation systems efficiently. In this paper, a prediction model that monitors real-time data of sensor nodes in a clinical environment using a machine learning algorithm is proposed. An IoT-based smart hospital environment has been developed that controls and monitors appliances over the Internet using different sensors such as current sensors, a temperature and humidity sensor, air quality sensor, ultrasonic sensor and flame sensor. The IoT-generated sensor data have three important characteristics, namely, real-time, structured and enormous amount. The main purpose of this research is to predict early faults in an IoT environment in order to ensure the integrity, accuracy, reliability and fidelity of IoT-enabled devices. The proposed fault prediction model was evaluated via decision tree, K-nearest neighbor, Gaussian naive Bayes and random forest techniques, but random forest showed the best accuracy over others on the provided dataset. The results proved that the ML techniques applied over IoT-based sensors are well efficient to monitor this hospital automation process, and random forest was considered the best with the highest accuracy of 94.25%. The proposed model could be helpful for the user to make a decision regarding the recommended solution and control unanticipated losses generated due to faults during the automation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.